
Double Integrals

1

The definite integral of a continuous function f  of one variable on an interval fa, bg is 
defined as

yb

a
 f sxd dx − lim

nl`
 f f sx1d Dx 1 f sx2d Dx 1 ∙ ∙ ∙ 1 f sxnd Dxg

where Dx − sb 2 adyn and x1, x2, . . . , xn are the endpoints of the subintervals of fa, bg 
with width Dx. We saw that if f sxd is a positive function, then yba f sxd dx can be interpreted 
as an area and we used yba f sxd dx to compute average values.

In a similar way we will show here how to define the double integral of a function of 
two variables f sx, yd on a rectangle. We will see how to interpret it as a volume if f sx, yd is 
a positive function and how to use it to calculate average values.

Double Integrals over Rectangles
We start with a function f sx, yd whose domain is a rectangle

R − hsx, yd | a < x < b, c < y < dj

If we divide the interval fa, bg into m subintervals of equal width Dx − sb 2 adym and we 
divide the interval fc, dg into n subintervals of equal width Dy − sd 2 cdyn, then, as shown 
in Figure 1, R is divided into mn subrectangles each with area DA − Dx Dy. The upper 
right corner of a typical subrectangle has coordinates sxi, yjd.

Dividing R into subrectangles

yj-1y
yj

y

x

d

c
›

0 ⁄ ¤a b

(xi, yj)

Îx

Îy

xi-1 xi

(xm, yn)  

FIGURE 1

By analogy with Equation 1 we define the double integral of f  over the rectangle R as 
a limit of double Riemann sums:

2 �	 y
R

y  f sx, yd dA − lim
m,nl `

 f f sx1, y1d DA 1 f sx1, y2d DA 1 ∙ ∙ ∙ 1 f sxm, ynd DAg

There are a total of mn terms in the Riemann sum in Definition 2, one for each of the mn 
subrectangles in Figure 1. If the limit exists, f  is called integrable.

For a positive function we can interpret f sxi, yjd as the height of a thin rectangular col-
umn with base area DA and volume f sxi, yjd DA. (See Figure 2.) So the Riemann sum in 
Definition 2 can be interpreted as the sum of volumes of columns (see Figure 3) and this 
sum is an approximation to the volume of the solid that lies under the graph of the surface 
z − f sx, yd and above the rectangle R.

1

FIGURE 1� 
Dividing R into subrectangles
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2   ■   DOUBLE INTEGRALS

As m and n become large in Definition 2 and Figures 2 and 3, the approximation becomes 
closer and closer to the actual volume, so we define the volume of the solid to be the value 
of the double integral.

If f sx, yd > 0, the volume of the solid that lies under the surface z − f sx, yd and 
above the rectangle R is

V − y
R

y  f sx, yd dA

Iterated Integrals
It’s very difficult to evaluate a double integral using Definition 2 directly, so now we show 
how to express a double integral as an iterated integral, which can then be evaluated by 
calculating two single integrals.

Suppose that f  is a function of two variables that is integrable on the rectangle 
R − fa, bg 3 fc, dg. We use the notation ydc  f sx, yd dy to mean that x is held fixed (and 
treated as a constant) and f sx, yd is integrated with respect to y from y − c to y − d. This 
procedure is called partial integration with respect to y. (Notice its similarity to partial dif-
ferentiation.) Now ydc  f sx, yd dy is a number that depends on the value of x, so it defines a 
function of x:

Asxd − yd

c
 f sx, yd dy

If we now integrate the function A with respect to x from x − a to x − b, we get

	 yb

a
 Asxd dx − yb

a
 Fyd

c
 f sx, yd dyG dx	

The integral on the right side of Equation 7 is called an iterated integral. Usually the 
brackets are omitted. Thus

	 yb

a
 yd

c
 f sx, yd dy dx − yb

a
 Fyd

c
 f sx, yd dyG dx	

means that we first integrate with respect to y from c to d and then with respect to x from 
a to b.

Similarly, the iterated integral

	 yd

c
 yb

a
 f sx, yd dx dy − yd

c
 Fyb

a
 f sx, yd dxG dy	

3

4

5

0 

FIGURE 2 FIGURE 3
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FIGURE 2�  FIGURE 3� 
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	 DOUBLE INTEGRALS   ■   3

means that we first integrate with respect to x (holding y fixed) from x − a to x − b and 
then we integrate the resulting function of y with respect to y from y − c to y − d. Notice 
that in both Equations 8 and 9 we work from the inside out.

EXAMPLE �1�  Evaluate the iterated integrals.

(a)	 y3

0
 y2

1
 x 2y dy dx	 (b)	 y2

1
 y3

0
 x 2 y dx dy

SOLUTION
(a)  Working from the inside out, we first evaluate y2

1
 x 2y dy. Regarding x as a constant, 

we obtain

y2

1
 x 2 y dy − Fx 2 

y 2

2 Gy−1

y−2

− x 2S 22

2 D 2 x 2S 12

2 D − 3
2 x 2

Thus the function A in the preceding discussion is given by Asxd − 3
2 x 2 in this  

example. We now integrate this function of x from 0 to 3:

 y3

0
 y2

1
 x 2 y dy dx − y3

0
 Fy2

1
 x 2 y dyG dx

 − y3

0
 32 x 2 dx −

x 3

2 G0

3

−
27

2

(b)  Here we first integrate with respect to x:

 y2

1
 y3

0
 x 2 y dx dy − y2

1
 Fy3

0
 x 2 y dxG dy − y2

1
 F x 3

3
 yG

x−0

x−3
 

     dy

	  − y2

1
 9y dy − 9 

y 2

2 G1

2

−
27

2
	 ■

Notice that in Example 1 we obtained the same answer whether we integrated with 
respect to y or x first. In general, it turns out (see Theorem 6) that the two iterated integrals 
in Equations 4 and 5 are always equal; that is, the order of integration does not matter. (This 
is similar to Clairaut’s Theorem on the equality of the mixed partial derivatives.)

The practical method for evaluating a double integral is to express it as an iterated inte-
gral (in either order). The following theorem is true for most functions that one meets in 
practice. It is proved in courses on advanced calculus.

6 � � If R − hsx, yd  |  a < x < b, c < y < d j, then

y
R

y f sx, yd dA − yb

a
 yd

c
 f sx, yd dy dx − yd

c
 yb

a
 f sx, yd dx dy

EXAMPLE �2�  Find the volume of the solid S that is enclosed by a paraboloid 
x 2 1 2y 2 1 z − 16, the planes x − 2 and y − 2, and the three coordinate planes.

SOLUTION
We first observe that S is the solid that lies under the surface z − 16 2 x 2 2 2y 2 and 
above the square R − hsx, yd  |  0 < x < 2, 0 < y < 2j. (See Figure 4.) Using Theorem 6 

7et150205
06/02/10
MasterID: 01281

FIGURE 4

0 1 2 2
1

0

y
x

z

16

12

8

4

0

FIGURE 4� 
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4   ■   DOUBLE INTEGRALS

we express the double integral for the volume as an iterated integral:

 V − y
R

y s16 2 x 2 2 2y 2 d dA

 − y2

0
 y2

0
 s16 2 x 2 2 2y 2 d dx dy

 − y2

0
 f16x 2 1

3 x 3 2 2y 2xgx−0

x−2

 dy

	  − y2

0
 (88

3 2 4y 2 ) dy − f88
3 y 2 4

3 y3 g0

2
− 48	 ■

NOTE � Figure 5 illustrates the definitions of volume and the double integral by showing 
how the solid in Example 2 is approximated by the four columns in the Riemann sum with 
m − n − 2. Figure 6 shows how the columns become better approximations to the volume 
as m and n increase.

7et150108
05/26/10
MasterID: 01264

FIGURE 6
The Riemann sum

approximations to the volume
under z=16-≈-2¥ become

more accurate as m and n increase. (c) m=n=16, VÅ46.46875(b) m=n=8, VÅ44.875(a) m=n=4, VÅ41.5

Double Integrals over More General Regions
What happens if we need to integrate a function f sx, yd over a region D that is not a rect-
angle? Suppose, for instance, that the domain D of f  lies between the graphs of two con-
tinuous functions of x:

D − hsx, yd | a < x < b, t1sxd < y < t2sxdj
Figure 7 shows three examples of such regions.

  

0

y

xba

D

y=g™(x)

y=g¡(x)

0

y

xba

D

y=g™(x)

y=g¡(x)

0

y

xba

D

y=g™(x)

y=g¡(x)

The double integral of f  over D, yy
D
 f sx, yd dA, can be defined by a limit similar to 

the one in Definition 2 and it can be evaluated as an iterated integral similar to the one in 
Theorem 6:

7 �	 y
D

y f sx, yd dA − yb

a
 yt2sxd

t1sxd
  f sx, yd dy dx

FIGURE 6�  
The Riemann sum  

approximations to the volume  
under z − 16 2 x 2 2 2y 2 become 

more accurate as m and n increases.

FIGURE 7
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FIGURE 5

16

2

2

z=16-≈-2¥

x

y

z

FIGURE 5� 
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	 DOUBLE INTEGRALS   ■   5

Notice that the lower and upper limits of integration in the inner integral in Equation 7 
are functions of x: y − t1sxd and y − t2sxd. This makes sense because for a fixed value of 
x between a and b, y goes from the lower boundary curve y − t1sxd to the upper boundary 
curve y − t2sxd. But in evaluating the inner integral we regard x as being constant not only 
in f sx, yd but also in the limits of integration, t1sxd and t2sxd. Notice also that in the special 
case where t1sxd − c and t2sxd − d, D is a rectangle and Equation 7 is the same as the first 
part of Theorem 6.

EXAMPLE �3�  Evaluate yyD sx 1 2yd dA, where D is the region bounded by the 
parabolas y − 2x 2 and y − 1 1 x 2.

SOLUTION � The parabolas intersect when 2x 2 − 1 1 x 2, that is, x 2 − 1, so x − 61. The 
region D is sketched in Figure 8 and we can write

D − hsx, yd | 21 < x < 1, 2x 2 < y < 1 1 x 2j

Since the lower boundary is y − 2x 2 and the upper boundary is y − 1 1 x 2, Equation 7 
gives

	  y
D

y sx 1 2yd dA − y1

21
 y11x2

2x2
 sx 1 2yd dy dx

	 − y1

21
 fxy 1 y 2g y−2x2

y−11x2

 dx

	  − y1

21
 fxs1 1 x 2 d 1 s1 1 x 2 d2 2 xs2x 2 d 2 s2x 2 d2 g  dx

 − y1

21
 s23x 4 2 x 3 1 2x 2 1 x 1 1d dx

	  − 23 
x 5

5
2

x 4

4
1 2 

x 3

3
1

x 2

2
1 xG

21

1

−
32

15
	 ■

NOTE  When we set up a double integral as in Example 3, it is essential to draw a dia-
gram. Often it is helpful to draw a vertical arrow as in Figure 8. Then the limits of integra-
tion for the inner integral can be read from the diagram as follows: The arrow starts at the 
lower boundary y − t1sxd, which gives the lower limit in the integral, and the arrow ends at 
the upper boundary y − t2sxd, which gives the upper limit of integration.

Average Value
Recall from Section 6.2 that the average value of a function f  of one variable defined on 
an interval fa, bg is

fave −
1

b 2 a
 yb

a
 f sxd dx

In a similar fashion we define the average value of a function f  of two variables defined 
on a rectangle R to be

fave −
1

AsRd
 yy

R

  f sx, yd dA

where AsRd is the area of R.

7et150308
06/02/10
MasterID: 01290

x1_1

y

(_1, 2) (1, 2)

D
y=2≈

y=1+≈

FIGURE 8FIGURE 8
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6   ■   DOUBLE INTEGRALS

If f sx, yd > 0, the equation

AsRd 3 fave − y
R

y  f sx, yd dA

says that the box with base R and height fave has the same volume as the solid that lies under 
the graph of f . [If z − f sx, yd describes a mountainous region and you chop off the tops of 
the mountains at height fave, then you can use them to fill in the valleys so that the region 
becomes completely flat. See Figure 9.]

EXAMPLE �4�  A manufacturer has modeled its output by a Cobb-Douglas production 
function

PsL, Kd − 70L0.6K 0.4

where L is the number of monthly labor hours and K is the monthly capital investment (in 
units of $1000). If L varies roughly evenly from 5000 to 6000 and monthly capital investment 
varies evenly between $20,000 and $30,000, find the average monthly output.

SOLUTION � We compute the average value of the function PsL, Kd over the rectangular 
region R defined by

5000 < L < 6000        20 < K < 30

The area of R is

AsRd − s6000 2 5000ds30 2 20d − 10,000

So the average value is 

 Pave −
1

AsRd
 yy

R

PsL, Kd dA

 −
1

10,000
 y6000

5000
y30

20
 PsL, Kd dK dL

 −
1

10,000
 y6000

5000
y30

20
 70L0.6K 0.4 dK dL

 −
1

10,000
 y6000

5000
 F70L0.6 

K 1.4

1.4 G
K−30

K−20

 dL

 −
1

10,000
 y6000

5000
 50L0.6s301.4 2 201.4d dL

 −
s301.4 2 201.4d

200
 FL1.6

1.6G
6000

5000

 −
s301.4 2 201.4ds60001.6 2 50001.6d

320
< 44,427.0 

The average monthly output is about 44,427 units.	 ■

7et150111
05/26/10
MasterID: 01267

FIGURE 9FIGURE 9
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	 DOUBLE INTEGRALS   ■   7

	21.	� �Find the volume of the solid that lies under the plane  
3x 1 2y 1 z − 12 and above the rectangle 
R − hsx, yd  |  0 < x < 1, 22 < y < 3j.

	22.	�� Find the volume of the solid that lies under the surface  
z − 4 1 x 2 2 y 2 and above the square
R − hsx, yd  |  21 < x < 1, 0 < y < 2j.

	23.	� �Find the volume of the solid that lies under the surface  
z − xy and above the triangle with vertices s1, 1d, s4, 1d,  
and s1, 2d.

	24.	�� Find the volume of the solid that is enclosed by the coordinate 
planes and the plane 3x 1 2y 1 z − 6.

25–27  ■�  Find the average value of f  over the given region.

	25.	�� f sx, yd − x 2 y,    R is the rectangle with vertices s21, 0d, 
s21, 5d, s1, 5d, s1, 0d

	26.	�� f sx, yd − e ysx 1 e y ,    R − hsx, yd  |  0 < x < 4, 0 < y < 1j

	27.	� �f sx, yd − xy,    D is the triangle with vertices s0, 0d, s1, 0d,  
and s1, 3d

	28.	�� A company models its monthly production by the function

Psx, yd − 200x 3y4 y 1y4

		��  where x is the number of workers and y is the monthly operating 
budget in thousand of dollars. The company uses between 50 
and 60 workers and its operating budget varies from $40,000 to 
$50,000 per month. Estimate the average monthly output.

	29.	� �The state of Colorado is in the shape of a rectangle that mea-
sures 388 miles west to east and 276 miles south to north. Sup-
pose the function

f sx, yd − 4.6 1 0.02x 2 0.01y 1 0.0001xy

		�  �approximates the snowfall, in inches, left during a storm at a 
location x miles east and y miles north of the southwest corner 
of the state. According to the model, what was the average 
snowfall for the entire state during the storm?

	30.	�� Researchers assessed the level of airborne pollution, in parts per 
million (ppm), created by a manufacturing facility throughout a 
nearby rectangular plot of farmland. The boundaries of the land 
run 4 miles from east to west and 2 miles from south to north. 
The level of pollution, measured in parts per million (ppm), at a 
location x miles west and y miles north of the southeast corner of 
the plot was modeled by f sx, yd − 2.7e20.1x20.4y. Use the model 
to find the average pollution level over the entire plot of land.

1–2  ■�  Find y50 f sx, yd dx and y10 f sx, yd dy.

	 1.	 f sx, yd − 12x 2 y 3	 2.	 f sx, yd − y 1 xey

3–12  ■�  Calculate the iterated integral.

	 3.	 y3

1
y1

0
 s1 1 4xyd dx dy

	 4.	 y1

0
y2

1
 s4x 3 2 9x 2 y 2d dy dx

	 5.	 y2

0
y1

0
 s2x 1 yd8 dx dy	 6.	 y1

0
y2

1
 
xe x

y
 dy dx

	 7.	 y4

1
y2

1
 S x

y
1

y

xD dy dx	 8.	 y1

0
y1

0
 ss 1 t  ds dt

	 9.	 y4

0
ysy

0
 xy 2 dx dy	 10.	 y1

0
y2

2x
 sx 2 yd dy dx

	11.	 y1

0
yx

x 2
 s1 1 2yd dy dx	 12.	 y2

0
y2y

y
 xy dx dy

13–20  ■�  Calculate the double integral.

	13.	� y
R

y s6x 2 y 3 2 5y 4d dA,    R − hsx, yd  |  0 < x < 3, 0 < y < 1j

	14.	� y
R

y sy 1 xy22d dA,    R − hsx, yd  |  0 < x < 2, 1 < y < 2j

	15.	� y
R

y xyex 2 y dA,    R − hsx, yd  |  0 < x < 1, 0 < y < 2j

	16.	� y
R

y x

1 1 xy
 dA,    R − hsx, yd  |  0 < x < 1, 0 < y < 1j

	17.	� y
R

y xy 2 dA,    D is the triangular region with vertices s0, 0d, 

		�  s1, 0d, and s1, 1d

	18.	� y
D

y y

x5 1 1
 dA,    D − hsx, yd  |  0 < x < 1, 0 < y < x 2j

	19.	� y
D

y x 3 dA,    D − hsx, yd  |  1 < x < e, 0 < y < ln xj

	20.	� y
D

y sx 1 yd dA,    D is bounded by y − sx and y − x 2

Exercises
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8   ■   DOUBLE INTEGRALS

Answers

1.  500y 3, 3x 2        3.  10        5.  261,632y45        7.  21
2  ln 2

9.  32        11.  3
10        13.  21

2         15.  1
2se 2 2 3d        17.  1

15

19.  3
16 e4 1 1

16        21.  47.5        23.  31
8         25.  5

6        27.  3
4

29.  About 9.8 inches
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	 DOUBLE INTEGRALS   ■   9

Solutions

1.
 5
0
1223  =


12

3

3
3
=5
=0

= 433
=5
=0

= 4(5)3 3 − 4(0)3 3 = 5003,

 1
0
1223  =


122

4

4

=1
=0

= 324
=1
=0

= 32(1)4 − 32(0)4 = 32

3.
 3
1

 1
0
(1 + 4)   =

 3
1


+ 22

=1
=0

 =
 3
1
[(1 + 2)− (0 + 0)]  =  3

1
(1 + 2)  =


 + 2

3
1

= (3 + 9)− (1 + 1) = 10

5.
 2
0

 1
0
(2+ )8 =

 2

0


1

2

(2+ )9

9

=1
=0

 [substitute  = 2+  ⇒  = 1
2
]

=
1

18

 2

0

[(2 + )9 − (0 + )9]  =
1

18


(2 + )10

10
− 10

10

2
0

= 1
180 [(4

10 − 210)− (210 − 010)] = 1,046,528
180 = 261,632

45

7.
 4

1

 2

1





+






  =

 4

1


 ln ||+ 1


· 1
2

2

=2
=1

 =

 4

1


 ln 2 +

2


− 0− 1

2


 =

 4

1


 ln 2 +

3

2




=

1
2
2 ln 2 + 3

2
ln || 4

1
= 8 ln 2 + 3

2
ln 4− 1

2
ln 2 = 15

2
ln 2 + 3 ln 412 = 21

2
ln 2

9.
 4
0

√
0

2   =
 4
0


1
2
22

=√
=0

 =
 4
0
1
2
2[(


 )2 − 02] = 1

2

 4
0
3  = 1

2


1
4
4
4
0
= 1

2
(64− 0) = 32

11.
 1
0

 
2
(1 + 2)   =

 1
0


 + 2

=
=2

 =
 1
0


+ 2 − 2 − (2)2  =  1

0
(− 4)

=

1
2
2 − 1

5
5
1
0
= 1

2
− 1

5
− 0 + 0 = 3

10

13.



(623 − 54)  =

 3
0

 1
0
(623 − 54)   =  3

0


3
2

24 − 5
=1
=0

 =
 3
0


3
2

2 − 1 
=

1
2
3 − 

3
0
= 27

2
− 3 = 21

2

15.





2 =
 2
0

 1
0


2   =
 2
0


1
2


2
=1
=0

 [let  = 2 ⇒  = 2 ]

= 1
2

 2
0
( − 1)  = 1

2


 − 

2
0
= 1

2 [(
2 − 2)− (1− 0)] = 1

2 (
2 − 3)

17.  is the region below the line  =  and above the line  = 0 for

0 ≤  ≤ 1, so = {( ) | 0 ≤  ≤ 1 0 ≤  ≤ } and



2
=

 1

0

 

0


2
  =

 1

0



1
3

3=
=0



=

 1

0

1
3

4
 =


1
3 · 155

1
0
= 1

15 − 0 = 1
15

19.



3 =

 
1

 ln
0

3   =
 
1


3

=ln 
=0

 =
 
1
3 ln


integrate by parts

with  = ln  = 3 


=

1
4
4 ln− 1

16
4

1
= 1

4
4 − 1

16
4 − 0 + 1

16
= 3

16
4 + 1

16
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10   ■   DOUBLE INTEGRALS

21. The plane 3+ 2 +  = 12 is the function  = 12− 3− 2, so the volume of the solid is
 =



(12− 3− 2)  =  3−2  10 (12− 3− 2)  =  3−2 12− 3

2
2 − 2=1

=0


=
 3
−2

21
2 − 2


 =


21
2  − 2

3
−2 =

95
2

23. The region of integration is the region below the line + 3 = 7 ⇔  = (7− )3 and above the line  = 1 for

1 ≤  ≤ 4. Thus
=

 4
1

 (7−)3
1

   =
 4
1


1
2
2

=(7−)3
=1



=
 4
1

1
2[

1
9 (7− )2 − 1]  = 1

2

 4
1

1
9[(7− )2 − 9] 

= 1
18

 4
1
(3 − 142 + 40)  = 1

18


1
4
4 − 14

3
3 + 202

4
1

= 1
18


256
3
− 187

12


= 31

8

25.  is the rectangle [−1 1] × [0 5]. Thus, () = 2 · 5 = 10 and

ave =
1

()



( )  = 1

10

 5
0

 1
−1 

2   = 1
10

 5
0


1
3
3

=1

=−1  =
1
10

 5
0
2
3
  = 1

10


1
3
2
5
0
= 5

6
.

27. The average value of a function  of two variables defined on a rectangle  was defined as ave = 1
()



( ), where

() is the area of the region of integration . Extending this definition to general regions, we have

ave =
1

()



( ).

Here = {( ) | 0 ≤  ≤ 1 0 ≤  ≤ 3}, so () = 1
2
(1)(3) = 3

2

and

ave =
1

()



( ) = 1

32

 1
0

 3
0

  

= 2
3

 1
0


1
2
2

=3
=0

 = 1
3

 1
0
93  = 3

4
4
1
0
= 3

4

29. If we place the origin at the southwest corner of the state, then the region is described by the rectangle

 = {( ) | 0 ≤  ≤ 388 0 ≤  ≤ 276}. The area of  is 388 · 276 = 107,088, and the average snowfall was

ave =
1

()




( )  =
1

107,088

 388

0

 276

0

(46 + 002− 001 + 00001)  

=
1

107,088

 388

0


46 + 002 − 00052 + 0000052=276

=0


=
1

107,088

 388

0

(12696 + 552− 38088 + 38088)  = 1

107,088

 388

0

(88872 + 93288) 

=
1

107,088


88872+ 466442

388
0

=
1

107,088
(1,047,020794) ≈ 977 in
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